Morphogenic Effects of Ezrin Require a Phosphorylation-Induced Transition from Oligomers to Monomers at the Plasma Membrane

نویسندگان

  • Alexis Gautreau
  • Daniel Louvard
  • Monique Arpin
چکیده

ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH(2)- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ezrin oligomers are the membrane-bound dormant form in gastric parietal cells.

Ezrin is a member of ezrin, radixin, moesin (ERM) protein family that links F-actin to membranes. The NH(2)- and COOH-terminal association domains of ERM proteins, known respectively as N-ERMAD and C-ERMAD, participate in interactions with membrane proteins and F-actin, and intramolecular and intermolecular interactions within and among ERM proteins. In gastric parietal cells, ezrin is heavily ...

متن کامل

Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures.

The cortical cytoskeleton of eucaryotic cells provides structural support to the plasma membrane and also contributes to dynamic processes such as endocytosis, exocytosis, and transmembrane signaling pathways. The ERM (ezrin-radixin-moesin) family of proteins, of which ezrin is the best studied member, play structural and regulatory roles in the assembly and stabilization of specialized plasma ...

متن کامل

Modelling Ser129 Phosphorylation Inhibits Membrane Binding of Pore-Forming Alpha-Synuclein Oligomers

BACKGROUND In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn), implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were iden...

متن کامل

Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis

Ezrin is a component of the microvillus cytoskeleton of a variety of polarized epithelial cells and is believed to function as a membrane-cytoskeletal linker. In this study, we isolated microvilli from human placental syncytiotrophoblast as a model system for biochemical analysis of ezrin function. In contrast to intestinal microvilli, ezrin is a major protein component of placental microvilli,...

متن کامل

Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin.

The ezrin-radixin-moesin proteins regulate B lymphocyte activation via their effect on BCR diffusion and microclustering. This relies on their ability to dynamically tether the plasma membrane with actin filaments that is in turn facilitated by phosphorylation of the conserved threonine residue in the actin-binding domain. In this study, we describe a novel function of ezrin in regulating JNK a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2000